A time-sensitive historical thesaurus-based semantic tagger for deep semantic annotation
نویسندگان
چکیده
Automatic extraction and analysis of meaning-related information from natural language data has been an important issue in a number of research areas, such as natural language processing (NLP), text mining, corpus linguistics, and data science. An important aspect of such information extraction and analysis is the semantic annotation of language data using a semantic tagger. In practice, various semantic annotation tools have been designed to carry out different levels of semantic annotation, such as topics of documents, semantic role labeling, named entities or events. Currently, the majority of existing semantic annotation tools identify and tag partial core semantic information in language data, but they tend to be applicable only for modern language corpora. While such semantic analyzers have proven useful for various purposes, a semantic annotation tool that is capable of annotating deep semantic senses of all lexical units, or all-words tagging, is still desirable for a deep, comprehensive semantic analysis of language data. With large-scale digitization efforts underway, delivering historical corpora with texts dating from the last 400 years, a particularly challenging aspect is the need to adapt the annotation in the face of significant word meaning change over time. In this paper, we report on the development of a new semantic tagger (the Historical Thesaurus Semantic Tagger), and discuss challenging issues we faced in this work. This new semantic tagger is built on existing NLP tools and incorporates a large-scale historical English thesaurus linked to the Oxford English Dictionary. Employing contextual disambiguation algorithms, this tool is capable of annotating lexical units with a historically-valid highly fine-grained semantic categorization scheme that contains about 225,000 semantic concepts and 4,033 thematic semantic categories. In terms of novelty, it is adapted for processing historical English data, with rich information about historical usage of words and a spelling variant normalizer for historical forms of English. Furthermore, it is able to make use of knowledge about the publication date of a text to adapt its output. In our evaluation, the system achieved encouraging accuracies ranging from 77.12% to 91.08% on individual test texts. Applying time-sensitive methods improved results by as much as 3.54% and by 1.72% on average. 2017 The Authors. Published by Elsevier Ltd. This is an open access article article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/).
منابع مشابه
Semantic-Based Image Retrial in the VQ Compressed Domain using Image Annotation Statistical Models
متن کامل
Evaluating Lexical Resources for a Semantic Tagger
Semantic lexical resources play an important part in both linguistic study and natural language engineering. In Lancaster, a large semantic lexical resource has been built over the past 14 years, which provides a knowledge base for the USAS semantic tagger. Capturing semantic lexicological theory and empirical lexical usage information extracted from corpora, the Lancaster semantic lexicon prov...
متن کاملTowards A Welsh Semantic Annotation System
Automatic semantic annotation of natural language data is an important task in Natural Language Processing, and a variety of semantic taggers have been developed for this task, particularly for English. However, for many languages, particularly for low-resource languages, such tools are yet to be developed. In this paper, we report on the development of an automatic Welsh semantic annotation to...
متن کاملA Large Semantic Lexicon for Corpus Annotation
Semantic lexical resources play an important part in both corpus linguistics and NLP. Over the past 14 years, a large semantic lexical resource has been built at Lancaster University. Different from other major semantic lexicons in existence, such as WordNet, EuroWordNet and HowNet, etc., in which lexemes are clustered and linked via the relationship between word/MWE senses or definitions of me...
متن کاملAnalysis of User query refinement behavior based on semantic features: user log analysis of Ganj database (IranDoc)
Background and Aim: Information systems cannot be well designed or developed without a clear understanding of needs of users, manner of their information seeking and evaluating. This research has been designed to analyze the Ganj (Iranian research institute of science and technology database) users’ query refinement behaviors via log analysis. Methods: The method of this research is log anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Speech & Language
دوره 46 شماره
صفحات -
تاریخ انتشار 2017